(1) Any triangle: $$A = 1/2bh$$ or: $$Sin \gamma = \frac{c Sin \Phi}{a}$$ (4) Segment of circle: $$A = \frac{\pi r^2 a}{360} - \frac{r^2 \sin a}{2}$$ $$L = \frac{2\pi ra}{360}$$ (2) Right triangle: $$a = \sqrt{c^2 - b^2}$$ $$b = \sqrt{c^2 - a^2}$$ $$c = \sqrt{a^2 + b^2}$$ (5) Segment of circle: 360 $$A = \frac{rL}{2} = \frac{\pi r^2 a}{360}$$ (3) Circle: $$A = \pi r^2$$ $$A = 0.7854 D^2$$ $$C = \pi D$$ A = area - b = length of base c = hypotenuse - C = circumference - V = volume - r = radius - D = diameter - $\pi = 3.1416$ L = length of arc - K = length of chord - (6) Regular polygons. The area of any regular polygon (all sides equal, all angles equal) is equal to the product of the square of the lengths of one side and the factors. Example problem: Area of a regular octagon having 6-inch sides is 6 x 6 x 4.828, or 173.81 square inches. See factors in table. APPENDIX B - GEOMETRIC FORMULAS | POLYGON FACTORS | | | | | | | | |-----------------|--------|--------------|--------|--|--|--|--| | No. of sides | Factor | No. of sides | Factor | | | | | | 3 | 0.433 | 8 | 4.828 | | | | | | 4 | 1.000 | 9 | 6.182 | | | | | | 5 | 1.720 | 10 | 7.694 | | | | | | 6 | 2.598 | 11 1 | 9.366 | | | | | | 7 | 3.634 | 12 | 11.196 | | | | | (9) Cube: $V = b^3$ (10) Rectangular parallelepiped $$V = ab_1b_2$$ (7) Rectangle and parallelogram: (11) Prism or cylinder: (8) Trapezoid: $$A = 1/2a(b_1 + b_2)$$ (12) Pyramid or cone: $$V = (1/3)a$$ x area of base (13) Sphere: $V = (4/3)\pi r^3 = \frac{\pi D^3}{6}$ $$A = 4 \pi r^2$$ ## **GEOMETRIC FORMULAS (continued)** $$a^{2} = c^{2} - b^{2}$$ $$Sin A = \frac{a}{c}$$ $$b^{2} = c^{2} - a^{2}$$ $$Cos A = \frac{b}{c}$$ $$c^{2} = a^{2} + b^{2}$$ $$Tan A = \frac{a}{b}$$ | | | | Righ | nt triangle | | | | | | | |-------|------------------------|------------------------------|------|-------------|------------------|-------------------|---------------------------------|--|--|--| | | To find | | | | | | | | | | | Given | Α | В | С | а | b | С | area | | | | | a,b | tan A = \frac{a}{b} | tan <i>B</i> = $\frac{b}{a}$ | 90 | | | $\sqrt{a^2+b^2}$ | <u>ab</u>
2 | | | | | a,c | $\sin A = \frac{a}{c}$ | $\cos B = \frac{a}{c}$ | 90 | | $\sqrt{c^2-a^2}$ | | $\frac{a}{2}\sqrt{c^2a^2}$ | | | | | A,a | | 90 - A | 90 | | a cot A | <u>a</u>
sin A | <u>a² cot A</u>
2 | | | | | A,b | | 90 - A | 90 | b tan A | | b
cos A | <u>b² tan A</u> | | | | | A,c | | 90 - A | 90 | c sin A | c cos A | | c ² sin 2A
2 | | | | $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ $$S = \frac{a+b+c}{2}$$ $$a^{2} = b^{2} + c^{2} - 2bc \cos A$$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$ | | C | blique triangle | | | | | |-------|---------------------------------------|---|---|--------------------------------|--------------------------------|--| | Given | | To find | | | | | | | А | В | С | b | С | area | | a,b,c | $\cos_2^A = \sqrt{\frac{s(s-a)}{bc}}$ | $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}}$ | $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$ | | | $\sqrt{s(s-a)(s-b)(s-c)}$ | | a,A,B | | | 180 - (A+B) | a sin <i>B</i>
sin <i>A</i> | a sin <i>C</i>
sin <i>A</i> | a ² sin <i>B</i> sin <i>C</i>
2 sin <i>A</i> | | a,b,A | | $\sin B = \frac{b \sin A}{a}$ | | | b sin C
sin B | | | a,b,c | | $\tan A = \frac{a \sin C}{b - a \cos C}$ | | | $\sqrt{a^2 + b^2 - 2ab\cos C}$ | <u>ab sin <i>C</i></u>
2 | ## **GEOMETRIC FORMULAS (continued)** | Degree
of Angle | Sine | Cosecant | Tangent | Cotangent | Secant | Cosine | Degree
of Angle | |--------------------|--------|----------|-----------|-----------|----------|--------|--------------------| | 0 | 0.000 | | 0.000 | | 1.000 | 1.000 | 90 | | 1 | 0.017 | 57.30 | 0.017 | 57.29 | 1.000 | 1.000 | 89 | | 2 | 0.035 | 28.65 | 0.035 | 28.64 | 1.001 | 0.999 | 88 | | 3 | 0.052 | 19.11 | 0.052 | 19.08 | 1.001 | 0.999 | 87 | | 4 | 0.070 | 14.34 | 0.070 | 14.30 | 1.002 | 0.998 | 86 | | 5 | 0.087 | 11.47 | 0.087 | 11.43 | 1.004 | 0.996 | 85 | | 6 | 0.105 | 9.567 | 0.105 | 9.514 | 1.006 | 0.995 | 84 | | 7 | 0.122 | 8.206 | 0.123 | 8.144 | 1.008 | 0.993 | 83 | | 8 | 0.139 | 7.185 | 0.141 | 7.115 | 1.010 | 0.990 | 82 | | 9 | 0.156 | 6.392 | 0.158 | 6.314 | 1.012 | 0.988 | 81 | | 10 | 0.174 | 5.759 | 0.176 | 5.671 | 1.015 | 0.985 | 80 | | 11 | 0.191 | 5.241 | 0.194 | 5.145 | 1.019 | 0.982 | 79 | | 12 | 0.208 | 4.810 | 0.213 | 4.705 | 1.022 | 0.978 | 78 | | 13 | 0.225 | 4.445 | 0.231 | 4.331 | 1.026 | 0.974 | 77 | | 14 | 0.242 | 4.134 | 0.249 | 4.011 | 1.031 | 0.970 | 76 | | 15 | 0.259 | 3.864 | 0.268 | 3.732 | 1.035 | 0.966 | 75 | | 16 | 0.276 | 3.628 | 0.287 | 3.487 | 1.040 | 0.961 | 74 | | 17 | 0.292 | 3.420 | 0.306 | 3.271 | 1.046 | 0.956 | 73 | | 18 | 0.309 | 3.236 | 0.325 | 3.078 | 1.051 | 0.951 | 72 | | 19 | 0.326 | 3.072 | 0.344 | 2.904 | 1.058 | 0.946 | 71 | | 20 | 0.342 | 2.924 | 0.364 | 2.747 | 1.064 | 0.940 | 70 | | 21 | 0.358 | 2.790 | 0.384 | 2.605 | 1.071 | 0.934 | 69 | | 22 | 0.375 | 2.669 | 0.404 | 2.475 | 1.079 | 0.927 | 68 | | 23 | 0.391 | 2.559 | 0.424 | 2.356 | 1.086 | 0.921 | 67 | | 24 | 0.407 | 2.459 | 0.445 | 2.246 | 1.095 | 0.914 | 66 | | 25 | 0.423 | 2.366 | 0.466 | 2.145 | 1.103 | 0.906 | 65 | | 26 | 0.438 | 2.281 | 0.488 | 2.050 | 1.113 | 0.899 | 64 | | 27 | 0.454 | 2.203 | 0.510 | 1.963 | 1.122 | 0.901 | 63 | | 28 | 0.469 | 2.130 | 0.532 | 1.881 | 1.133 | 0.883 | 62 | | 29 | 0.485 | 2.063 | 0.554 | 1.804 | 1.143 | 0.875 | 61 | | 30 | 0.500 | 2.000 | 0.577 | 1.732 | 1.155 | 0.866 | 60 | | Degree
of Angle | Cosine | Secant | Cotangent | Tangent | Cosecant | Sine | Degree
of Angle | TRIGONOMETRIC FUNCTIONS ## GEOMETRIC FORMULAS (continued) | Degree
of Angle | Sine | Cosecant | Tangent | Cotangent | Secant | Cosine | Degree
of Angle | |--------------------|--------|----------|-----------|-----------|----------|--------|--------------------| | 31 | 0.515 | 1.942 | 0.601 | 1.664 | 1.167 | 0.857 | 59 | | 32 | 0.530 | 1.887 | 0.625 | 1.600 | 1.179 | 0.848 | 58 | | 33 | 0.545 | 1.836 | 0.649 | 1.540 | 1.192 | 0.839 | 57 | | 34 | 0.559 | 1.788 | 0.675 | 1.483 | 1.206 | 0.829 | 56 | | 35 | 0.574 | 1.743 | 0.700 | 1.428 | 1.221 | 0.829 | 55 | | 36 | 0.588 | 1.701 | 0.727 | 1.376 | 1.236 | 0.809 | 54 | | 37 | 0.602 | 1.662 | 0.754 | 1.327 | 1.252 | 0.799 | 53 | | 38 | 0.616 | 1.624 | 0.781 | 1.280 | 1.269 | 0.788 | 52 | | 39 | 0.629 | 1.589 | 0.810 | 1.235 | 1.287 | 0.777 | 51 | | 40 | 0.643 | 1.556 | 0.839 | 1.192 | 1.305 | 0.766 | 50 | | 41 | 0.656 | 1.542 | 0.869 | 1.150 | 1.325 | 0.755 | 49 | | 42 | 0.669 | 1.494 | 0.900 | 1,111 | 1.346 | 0.743 | 48 | | 43 | 0.682 | 1.466 | 0.933 | 1.072 | 1.367 | 0.731 | 47 | | 44 | 0.695 | 1.440 | 0.966 | 1.036 | 1.390 | 0.719 | 46 | | 45 | 0.707 | 1.414 | 1.000 | 1.100 | 1.414 | 0.707 | 45 | | Degree
of Angle | Cosine | Secant | Cotangent | Tangent | Cosecant | Sine | Degree
of Angle | TRIGONOMETRIC FUNCTIONS